

MINOS Near Detector Front End Electronics Tutorial

Description of the MINDER Module

Presented By

Gary Drake Argonne National Laboratory Apr. 4, 2002

Apr. 4, 2002 p. 2

Overview

Some Background

- ➤ Similar to CDF Shower Max Design (SMD)
- ➤ 6U Format
- ➤ Holds 16 MENU Modules
- ➤ (1/4) 16-Channel PMT
- ➤ Reside in Crates Close to Photodetectors

Near Detector Electronics Tutorial MINDER Module Description

Apr. 4, 2002 p. 3

Overview (Cont.)

- What it Does (Cont.)
 - ➤ Processes Triggers
 - ➤ Pushes Data to MASTER
 - ➤ Contains 27-Bit
 Timestamp Counters
 - ➤ Sets Up DC Current Calibration
 - Contains Pre-ProgrammedDiagnostic Data

Apr. 4, 2002 p. 4

Timing

- ➤ Every MINDER has Point-to-Point Connection with MTM to Receive Timing Signals:
 - QCLK 53 MHz for QIE
 - SGATE Spill Gate for Spill in Progress
 - CNTRST Timestamp Counter Reset
 - TCAL Used for Diagnostics

Apr. 4, 2002 p. 5

Triggering

- General Philosophy
 - ➤ SGATE Comes from MTM
 - ➤ Other Trigger Signals Come in from KEEPER Across Backplane as nDTRIG, on Dedicated Signal Lines
 - Dynode Trigger (Cosmic Rays, Dark Current)
 - VME Trigger
 - Flash Trigger
 - External Process

Apr. 4, 2002 p. 6

Triggering (Cont.)

Spill Gate Trigger

- ➤ SGATE Comes from Clock System via MTM
- ➤ Causes Writing of Data to FIFOs on MENU Module for Duration of Gate (10 uSec ~ 526 Clocks)
- Data Read Out After Spill
- ➤ Data Marked as Spill Data

Description of MINDER

Apr. 4, 2002 p. 7

Triggering (Cont.)

• Dynode Trigger

- > Comes from Discriminators on KEEPER
- ➤ Discriminated Signal from All 4 PMTs Sent from KEEPER Onto Backplane as nDTRIG[3:0]
- ➤ MINDERS Receive All 4 Signals
- ➤ Slot Switch Settings on MINDER Tell It Which nDTRIG Signal to Respond To
 - → MUST Set Address Switches Properly

Description of MINDER

Apr. 4, 2002 p. 8

Triggering (Cont.)

- Dynode Trigger (Cont.)
 - ➤ Causes Writing of Data to FIFOs on MENU Module for 8 Clocks
 - ➤ Data Read Out After Write Cycle
 - ➤ Data Marked as Dynode Event

Apr. 4, 2002 p. 9

Triggering (Cont.)

- Dynode Trigger (Cont.)
 - > Setting Switches on MINDER:
 - Address Switched on MINDER Correspond to Slot
 - Switches Control Which of Dynode Signals (nDTRIG0 nDTRIG3) to Respond To

<u>Slot</u>	<u>nDTRIG</u>
0-2	None
3-6	nDTRIG0
7-10	nDTRIG1
11-14	nDTRIG2
15-18	nDTRIG3
19-21	None

Apr. 4, 2002

p. 10

Description of MINDER

Triggering (Cont.)

• VME Trigger

- ➤ Issued by ROP through MASTER to KEEPER
- ➤ Used to Obtain Pedestal and Calibration (ICAL) Events
- ➤ KEEPER Sends Onto Backplane as nDTRIG6
- ➤ MINDERS Programmed to Acquire 64 Clock Cycles
- ➤ Causes Writing of Data to FIFOs on MENU Module for 64 Clocks
- ➤ Data Read Out After Write Cycle
- > Data Marked as Pedestal Event or ICAL Event

Apr. 4, 2002 p. 11

Triggering (Cont.)

- Flash Event Trigger
 - > Comes from TCAL on KEEPER
 - ➤ KEEPER Sends Onto Backplane as nDTRIG4
 - ➤ KEEPER Looks for Coincidence of This *and* Dynode Trigger
 - Causes Writing of Data to FIFOs on MENU Module for 8 Clocks
 - ➤ Data Read Out After Write Cycle
 - ➤ No Different from Normal Dynode Trigger *Except*Event is Marked as Flash Event

Apr. 4, 2002 p. 12

Triggering (Cont.)

• External Process Trigger

- Comes from Front Panel Connector on KEEPER
- ➤ KEEPER Sends Onto Backplane as nDTRIG5
- Causes Writing of Data to FIFOs on MENU Module for 8 Clocks
- ➤ Data Read Out After Write Cycle
- > Data Marked as External Process Event

Description of MINDER

Apr. 4, 2002 p. 13

Triggering (Cont.)

• Summary of Triggering

Trigger	Meaning	Used For
SGATE	Spill Gate	Trigger on Spill
nDTRIG[3:0]	Dynode Trigger	Cosmic Rays, PMT Noise, Flasher
nDTRIG4	Flasher Trigger	Forms Gate with Dynode Trigger
nDTRIG5	External Process	Tests, Special Applications
nDTRIG6	VME Trigger	Pedestals, Calibrations

Apr. 4, 2002 p. 14

Controlling the Triggering

General Philosophy

- ➤ There Exists 8 Dedicated Control Lines on Backplane, Set by MASTER Writing Register to KEEPER
- ➤ Called nCTRL[7:0]
- First 3, nCTRL[2:0] Set Mode 8 States
 - 1 State for Physics
 - 6 States for "Utilities"
 - 1 Off State
- ➤ Remaining 5 States Used for Physics

Description of MINDER

Apr. 4, 2002 p. 15

Controlling the Triggering (Cont.)

 CTRL Bits Defined 		<u>le</u>	Meaning	Used For	
	000	0	OFF	Board Will Not Respond to Triggers	
CTRL[7:0]: - Set by Writing to Register on KEEPER		1	NORM Mode	Physics Uses nCTRL3-nCTRL7	
7 6 5 4 3 210	010	2	PED Mode	Acquire Pedestals Uses VME Trigger	
XXXXX <u>nnn</u> - nnn Are Mode Bits	011	3	ICAL Mode	DC I Inj. Cal Uses VME Trigger	
When Set to - Then Module Responds	100	4	DIAG Mode	Diagnostic Event Uses VME Trigger	
XXXXXX001 to Other CTRL Bits, Otherwise X's Ignored	101	5	TCAL Trig 1	Trigger on TCAL DTRIG Sequence	
	110	6	TCAL Trig 2	Trigger on TCAL SGATE Sequence	
	111	7	QIE Reset	Generate QIE Reset Using TCAL	

Description of MINDER

Apr. 4, 2002 p. 16

Controlling the Triggering (Cont.)

• CTDI Bita Defined (Cont.)	<u>nCTRL</u>	<u>Meaning</u>	<u>Used For</u>
• CTRL Bits Defined (Cont.) Magning of Other CTPL Bits:	nCTRL0	Mode Bit 0	Setting Mode
Meaning of Other CTRL Bits:	nCTRL1	Mode Bit 1	Setting Mode
CTRL[7:0]: - Set by Writing to	nCTRL2	Mode Bit 2	Setting Mode
Register on KEEPER	nCTRL3	SGATE Enable	Allow Response to SGATE - Norm Mo
7 6 5 4 3 210	nCTRL4	Dynode Trigger Enable	Allow Response to Dynode - Norm Mo
XXXXX <u>nnn</u> - nnn Are Mode Bits	nCTRL5	Ext. Flash Trigger Enable	Allow Response to Ext Flash - Norm M
When Set to: XXXXXX001 - Defines NORM Mode	NCTRL6	TCAL Flash Enable	Allow Response to TCAL Flash Trig - Norm Mode
XXXXXX001 - Defines NORM Mode (Physics) Then Module Respond to Other CTRL Bits, Otherwise X's Ignored	nCTRL7	Ext. Process Enable	Allow Response to Ext. Process Trig - Norm Mode

Description of MINDER

Apr. 4, 2002 p. 17

Controlling the Triggering (Cont.)

• CTDI Pits Defined (Cont.)	<u>nCTRL</u>	Meaning	<u>Used For</u>
• CTRL Bits Defined (Cont.)	nCTRL0	Mode Bit 0	Setting Mode
When Set to:	nCTRL1	Mode Bit 1	Setting Mode
XXXXXX001 - Defines NORM Mode	nCTRL2	Mode Bit 2	Setting Mode
(Physics)	nCTRL3	SGATE Enable	Allow Response to SGATE - Norm Mo
Then Module Respond to Other CTRL Bits,	nCTRL4	Dynode Trigger Enable	Allow Response to Dynode - Norm Mo
Otherwise X's Ignored	nCTRL5	Ext. Flash Trigger Enable	Allow Response to Ext Flash - Norm M
Notice that Can Individually Turn On and Off Any of Triggers in	NCTRL6	TCAL Flash Enable	Allow Response to TCAL Flash Trig - Norm Mode
NORM Mode	nCTRL7	Ext. Process Enable	Allow Response to Ext. Process Trig - Norm Mode

Apr. 4, 2002 p. 18

Marking Data Words

General Philosophy

- > Spill Events Marked by SGATE
- Dynode Trigger Events Marked by nDTRIG[3:0]
- > Flash Events Marked by nDTRIG4
- External Process Events Marked by nDTRIG5
- ➤ Pedestal Events Marked by nDTRIG6 *and No* ICAL Enable (No Mode 3)
- Calibration Events Marked by nDTRIG6 *and* ICAL Enabled (Mode 3 Set)

MINDER Module Description Description of MINDER

Apr. 4, 2002 p. 19

Near Detector Electronics Tutorial

Marking Data Words

- How is Data Marked?
 - Each Data Transmission Sequence from MINDER has a Header Word
 - ➤ 3 Bits in Header Word Indicate Data Type

Description of MINDER

Apr. 4, 2002 p. 20

Marking Data Words (Cont.)

How is Data Marked?

➤ Data Type in Header Word
Determined by What is Enabled
(The nCTRL Bits),
and What Kind of Trigger
Was Received
(The nDTRIG Bits)

Data Type 0	Meaning Pedestal	Set By MODE[2:0] = 2 and nDTRIG6
1	ICAL	MODE $[2:0] = 3$ and nDTRIG6
2	Diagnostic	MODE [2:0] = 4 and nDTRIG6
3	TCAL (Not Flasher)	MODE [2:0] = 5 and nDTRIG6
4	Spill	MODE [2:0] = 1 and SGATE
5	Dynode	MODE [2:0] = 1 and nDTRIG <i>i</i>
6	Flasher	MODE [2:0] = 1 and nDTRIG <i>i</i>
7	Ext. Process	MODE [2:0] = 1 and nDTRIG5

Description of MINDER

Apr. 4, 2002 p. 21

Diagnostic Data

~	Mod	<u>le</u>	Meaning	Used For
• General Philosophy	000	0	OFF	Board Will Not Respond to Triggers
➤ MINDER Has Read-Only Memory, Pre-Programmed with Diagnostic Data	001	1	NORM Mode	Physics Uses nCTRL3-nCTRL7
CTDI [7:0]: Set by Writing to	010	2	PED Mode	Acquire Pedestals Uses VME Trigger
CTRL[7:0]: - Set by Writing to Register on KEEPER		3	ICAL Mode	DC I Inj. Cal Uses VME Trigger
7 6 5 4 3 210	100	4	DIAG Mode	Diagnostic Event Uses VME Trigger
XXXXX <u>nnn</u> - nnn Are Mode Bits	101	5	TCAL Trig 1	Trigger on TCAL DTRIG Sequence
When Set to - Then Module Sends	110	6	TCAL Trig 2	Trigger on TCAL SGATE Sequence
XXXXX100 Diagnostic Data to	111	7	QIE Reset	Generate QIE Reset
MASTER when Triggerd				Using TCAL
from VME				

Apr. 4, 2002 p. 22

Timestamps

- General Philosophy
- ➤ Each MINDER Contains a 27-Bit Counter
- Counter is Reset by CNTRST from Clock
 - All MINDERs Reset
 Simultaneously
- Counter Advances with QCLK at 53 MHz

- ➤ When Get A Trigger, Value of Counter is Stored in a Register
 - → Forms Timestamp Fiducial for Event
- Timestamp is Sent with Data as Part of Header Words in Data
 Transmission
- MASTER Uses Fiducial to Form Individual Timestamps

Apr. 4, 2002 p. 23

Data Transmission

• General Philosophy

- After Trigger, Sequencer Runs that Controls Data Transmission
- ➤ Data Sent As:

13 Data Bits

1 Parity Bit

1 Header Bit

1 Trailer Bit

1 Error Bit

1 Data Strobe

- First 3 Words Are Header Bits
 - Data Bits Contain Timestamp& Data Type
 - First Word has Header Bit Set
- ➤ Following Words Contain QIE Channel Data
 - Last Word Has Trailer Bit Set
- ➤ MINDER Forms Parity Bit on Data Sent
- ➤ MINDER Sends Data Strobe with Data

p. 24

Data Transmission (Cont.)

• Format

➤ 13 Bit Header Words:

Word	Bits: 12 11 10 09 08 07 06	05 04 03	02 01	00
1	Undefined (Set Low)	Data Type	Undefined (Set Low)	Timestamp MSB
2	Timestamp Hig	gh Word (1	3 Bits)	
3	Timestamp Lo	w Word (1:	3 Bits)	

➤ 13 Bit Data Words:

12 11	10 09 08	07 06 05 04 03 02 01 00
CAPID	Range	QIE ADC
Bits	Bits	Bits

Description of MINDER

Apr. 4, 2002 p. 25

Data Transmission (Cont.)

• Transmission Sequence

➤ Channel Data is Sent to MASTER Ordered in Time:

CH00, TS00

CH01, TS00

CH02, TS00

• • •

CH15, TS00

CH00, TS01

CH01, TS01

CH02, TS01

• • •

CH15, TSnn

where nn is: ~8 for cosmic ray data

~526 for STE spill data

~64 for VME Triggers

Near Detector Electronics Tutorial MINDER Module Description

Apr. 4, 2002 p. 26

Priority Triggering

• The Problem

- ➤ Data Transmission from DTRIG Takes ~4.8 uSec = 256 RF Clock
- ➤ Spill or Flash Can Come At Any Time
- Need Method to Interrupt Lesser Important Processes

- ➤ 3 Levels of Priority, Used in NORM Mode Only
- ➤ Higher Priority Process
 Can Interrupt Lesser One

Apr. 4, 2002 p. 27

Priority Triggering (Cont.)

• The Solution

Priority	Meaning	Can Interrupt:
3	Lowest PriorityUsed for Dynode	NoneIgnored if AnotherPriority 1 in Progress
2	2nd PriorityUsed Flasher & Ext. Proc.	- Priority 3- Ignored if Another Priority 2 in Progress
1	Highest PriorityUsed for Spill	- Priority 2 & Priority 3- Ignored if Another Priority 1 in Progress
N/A	- Pedestals, ICAL Diagnostic Mode, TCAL-Generated Event	Does Not InterruptCannot Be InterruptedIgnores Triggers if in Progress

Priority Triggering (Cont.)

• The Solution (Cont.)

MINOS

- ➤ When Transmission is Interrupted, MINDER Sets Priority Error Bit
 - Tells MASTER Have Premature Termination
 - Prevents Word Count Error in MASTER

➤ Data Sent As:

p. 28

13 Data Bits

1 Parity Bit

1 Header Bit

1 Trailer Bit

1 Error Bit

1 Data Strobe